If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x+x^2=78
We move all terms to the left:
7x+x^2-(78)=0
a = 1; b = 7; c = -78;
Δ = b2-4ac
Δ = 72-4·1·(-78)
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-19}{2*1}=\frac{-26}{2} =-13 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+19}{2*1}=\frac{12}{2} =6 $
| b-33+b-34=b+30 | | -2-7(1-6v)=26+7v | | 16x^-49=0 | | (3w-11)w=70 | | y-20+y=y+34 | | 7b−5/2=6b−5/7 | | 7b−52=6b−57 | | 70=4x+2(-6x-13) | | F(1/2)=2x-5 | | y+40-y+3=y | | -63=-5x-3(3x-7) | | (5u+8)(4-u)=0 | | -4(1-3x)=8 | | 3p^2-5p-8=0 | | 2y-12=48 | | -7x-3(x-3)=109 | | 2+-6+-7+7/2-x/4+2+4/5+-1+-1=Q | | x-9+x-47=x+47 | | X=8x^2+12x+4 | | 2t-5+3(t-2)=4-5(2t-2) | | 3(x-3)+7=13 | | 4t+8/4t-3=2t+3/2t-5 | | 4(x-3)=7x+5-3x | | F(x)=2x^2-4x+15 | | 7(9+5x)=343 | | 4(2x+8)=32 | | 3/7=1/4c | | =x^2-8x+510 | | g(12)=3(12+8) | | 24x=14x+50 | | (7-y)/4=3 | | 4(x-2)=5x+3-1x |